// Use of AI

Artificial Intelligence

Advance­ments in Arti­fi­ci­al Intel­li­gence (AI) are the most impactful deve­lo­p­ments in Data Science in the last deca­de. With them, pre­vious­ly unsol­va­ble ana­ly­ti­cal pro­blems (like under­stan­ding traf­fic on the level of a human dri­ver) can be sol­ved ade­qua­te­ly.

The­se advan­ces impro­ve the methods of Machi­ne Lear­ning (ML), which are algo­rith­ms that deri­ve know­ledge (or rela­ti­onships) from data to make pre­dic­tions and gene­ra­te insights for the users. Com­pared to ML, AI offers dra­sti­cal­ly expan­ded capa­bi­li­ties to approach high­ly com­plex pro­blems (like image reco­gni­ti­on, speech reco­gni­ti­on, speech syn­the­sis, text gene­ra­ti­on and extra­c­tion) on the level of a human being (the sup­po­sed level of orga­nic intel­li­gence).

The­se advance­ments have been made pos­si­ble through new trai­ning algo­rith­ms to crea­te high­ly com­plex models, the avai­la­bi­li­ty of huge amounts of anno­ta­ted data (like images with pro­per descrip­ti­ons of the con­tent) and extre­me com­pu­ta­tio­nal capa­ci­ties in data cen­ters and with modern pro­ces­sor archi­tec­tures dedi­ca­ted to model trai­ning.

Life Science & Phar­ma

AI sup­ports the phar­maceu­ti­cal and life sci­en­ces indus­tries by acce­le­ra­ting rese­arch, opti­mi­zing stu­dies, and deve­lo­ping new the­ra­pies.

Appli­ca­ti­ons:

  • Pro­duc­tion Moni­to­ring: Real-time ana­ly­sis of pro­duc­tion data to detect devia­ti­ons ear­ly.
  • Qua­li­ty Assu­rance: Auto­ma­ted batch data inspec­tion to ensu­re con­sis­tent pro­duct qua­li­ty.
  • Pre­dic­ti­ve Main­ten­an­ce: Fore­cas­ting main­ten­an­ce needs for pro­duc­tion equip­ment to mini­mi­ze down­ti­me.
Finan­ce & Insu­rance

AI crea­tes value in finan­cial ser­vices through the ana­ly­sis of lar­ge data­sets, risk manage­ment, and fraud detection—even in real-time sce­na­ri­os.

Appli­ca­ti­ons:

  • Risk Manage­ment: Deve­lo­ping pre­dic­ti­ve models to iden­ti­fy mar­ket risks.
  • Fraud Detec­tion: Moni­to­ring tran­sac­tions and iden­ti­fy­ing anoma­lies.
  • Port­fo­lio Opti­miza­ti­on: Enhan­cing invest­ment decis­i­ons through his­to­ri­cal data ana­ly­sis.
Manu­fac­tu­ring indus­try

The manu­fac­tu­ring indus­try is ente­ring the era of Indus­try 4.0, cha­rac­te­ri­zed by the inte­gra­ti­on of intel­li­gent sys­tems, IoT (Inter­net of Things), and data-dri­ven decis­i­on-making. AI enables opti­mi­zed pro­ces­ses, pre­dic­ti­ve main­ten­an­ce, and qua­li­ty enhance­ments through data-based ana­ly­ses.

Appli­ca­ti­ons:

  • Pre­dic­ti­ve Main­ten­an­ce: Pre­dic­ting machi­ne fail­ures based on sen­sor data.
  • Pro­duc­tion Opti­miza­ti­on: Iden­ti­fy­ing bot­t­len­ecks and inef­fi­ci­en­ci­es in real time.
  • Qua­li­ty Con­trol: Proac­tively detec­ting devia­ti­ons to ensu­re com­pli­ance with stan­dards.
  • Ener­gy Effi­ci­en­cy: Ana­ly­zing ener­gy data to redu­ce con­sump­ti­on.

Related Content

Tra­di­tio­nal main­ten­an­ce often reli­es on manu­al inspec­tions and sche­du­led check-ups. While the­se are useful, they can be time-con­sum­ing, pro­ne to human error, and they risk to miss the ear­ly signs of poten­ti­al fail­ures. As a result, orga­niza­ti­ons are incre­asing­ly tur­ning to advan­ced tech­no­lo­gies to imple­ment proac­ti­ve main­ten­an­ce stra­te­gies.
The use of AI unlocks signi­fi­cant poten­ti­al for com­pa­nies in the phar­maceu­ti­cal and health­ca­re indus­tries. In this artic­le, we intro­du­ce some typi­cal and par­ti­cu­lar­ly wort­hwhile are­as of appli­ca­ti­on.
The Robo­TUNN rese­arch pro­ject is revo­lu­tio­ni­zing sub­way tun­nel inspec­tions by using robo­tics and arti­fi­ci­al intel­li­gence. Its goal is to auto­no­mously detect dama­ges and crea­te digi­tal twins that enable pre­dic­ti­ve main­ten­an­ce. Stat­Soft plays a key role in data inte­gra­ti­on and the deve­lo­p­ment of AI models for pre­dic­ti­ve main­ten­an­ce. The pro­ject is fun­ded by the mFUND initia­ti­ve.
In indus­tri­al manu­fac­tu­ring, the ana­ly­sis of image data enhan­ces moni­to­ring and opti­mi­zes defect detec­tion. Stan­dar­di­zed pro­ces­ses allow the use of machi­ne lear­ning (ML) to hand­le com­plex image signals. For more chal­len­ging tasks, AI models like Con­vo­lu­tio­nal Neu­ral Net­works (CNN) offer more effec­ti­ve solu­ti­ons. Dis­co­ver how pre-trai­ned models boost effi­ci­en­cy and the bene­fits this tech­no­lo­gy brings to real-world appli­ca­ti­ons.
Wir freu­en uns auf Ihre Anfra­ge.
Erfah­ren Sie mehr über unse­re Lösun­gen und ver­ein­ba­ren Sie direkt einen Ter­min!
JETZT KONTAKT AUFNEHMEN