Know-How AI Machine Learning
Bilderkennung zur Verbesserung der Instandhaltung

From Pixels to Predictions

Tra­di­tio­nal main­ten­an­ce often reli­es on manu­al inspec­tions and sche­du­led check-ups. While the­se are useful, they can be time-con­sum­ing, pro­ne to human error, and they risk to miss the ear­ly signs of poten­ti­al fail­ures. As a result, orga­niza­ti­ons are incre­asing­ly tur­ning to advan­ced tech­no­lo­gies to imple­ment proac­ti­ve main­ten­an­ce stra­te­gies.

StatSoft AI
Predictive Maintenance für Tunnelinspektionen

Predictive Maintenance for Subway Tunnel Inspections: StatSoft Participates in the Innovative Research Project RoboTUNN 

The Robo­TUNN rese­arch pro­ject is revo­lu­tio­ni­zing sub­way tun­nel inspec­tions by using robo­tics and arti­fi­ci­al intel­li­gence. Its goal is to auto­no­mously detect dama­ges and crea­te digi­tal twins that enable pre­dic­ti­ve main­ten­an­ce. Stat­Soft plays a key role in data inte­gra­ti­on and the deve­lo­p­ment of AI models for pre­dic­ti­ve main­ten­an­ce. The pro­ject is fun­ded by the mFUND initia­ti­ve.

AI Machine Learning Manufacturing

Image Recognition in Manufacturing 

In indus­tri­al manu­fac­tu­ring, the ana­ly­sis of image data enhan­ces moni­to­ring and opti­mi­zes defect detec­tion. Stan­dar­di­zed pro­ces­ses allow the use of machi­ne lear­ning (ML) to hand­le com­plex image signals. For more chal­len­ging tasks, AI models like Con­vo­lu­tio­nal Neu­ral Net­works (CNN) offer more effec­ti­ve solu­ti­ons. Dis­co­ver how pre-trai­ned models boost effi­ci­en­cy and the bene­fits this tech­no­lo­gy brings to real-world appli­ca­ti­ons.